DOI 10.2478/tmj-2014-0011

Initial coefficient bounds for a subclass of *m*-fold symmetric bi-univalent functions

H. M. Srivastava^{1,*}, S. Sivasubramanian² and R. Sivakumar²

¹ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada ² Department of Mathematics, University College of Engineering, Anna University (Chennai), Tindivanam 604001, Tamil Nadu, India

* Corresponding Author

E-mail: harimsri@math.uvic.ca, sivasaisastha@rediffmail.com, mrsiva75@gmail.com

Abstract

Let Σ denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

belonging to the normalized analytic function class \mathcal{A} in the open unit disk \mathbb{U} , which are bi-univalent in U, that is, both the function f and its inverse f^{-1} are univalent in U. The usual method for computation of the coefficients of the inverse function $f^{-1}(z)$ by means of the relation $f^{-1}(f(z)) = z$ is too difficult to apply in the case of *m*-fold symmetric analytic functions in \mathbb{U} . Here, in our present investigation, we aim at overcoming this difficulty by using a general formula to compute the coefficients of $f^{-1}(z)$ in conjunction with the residue calculus. As an application, we introduce two new subclasses of the bi-univalent function class Σ in which both f(z) and $f^{-1}(z)$ are *m*-fold symmetric analytic functions with their derivatives in the class \mathcal{P} of analytic functions with positive real part in \mathbb{U} . For functions in each of the subclasses introduced in this paper, we obtain the coefficient bounds for $|a_{m+1}|$ and $|a_{2m+1}|$.

2010 Mathematics Subject Classification. 30C45. 30C50, 30C80.

Keywords. Analytic function, Univalent functions, Bi-Univalent functions, m-Fold symmetric functions, m-Fold symmetric bi-univalent functions..

1 Introduction and definitions

Let \mathcal{A} denote the class of functions of the following form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are *analytic* in the open unit disk

$$\mathbb{U} = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1 \}.$$

We denote by \mathcal{S} the class of all functions in \mathcal{A} which are *univalent* in \mathbb{U} (see, for details, [2, 4]).

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1} , which is defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathbb{U}) \tag{1.2}$$

Tbilisi Mathematical Journal 7(2) (2014), pp. 1-10. Tbilisi Centre for Mathematical Sciences. Received by the editors: 09 June 2014

Accepted for publication: 13 October 2014.

Unauthenticated Download Date | 2/27/18 1:16 PM and

$$f(f^{-1}(w)) = w$$
 $\left(|w| < r_0(f); r_0(f) \ge \frac{1}{4}\right).$ (1.3)

In fact, the inverse function f^{-1} may be analytically continued to \mathbb{U} as follows:

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
 (1.4)

A function $f \in \mathcal{A}$ is said to be *bi-univalent* in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} . Let Σ denote the class of all functions $f \in \mathcal{A}$ which are bi-univalent in \mathbb{U} and are given by the equation (1.1).

Lewin [8] investigated the class Σ of bi-univalent functions and obtained a bound given by

$$|a_2| \leq 1.51.$$

Motivated by the work of Lewin [8], Brannan and Clunie [1] conjectured that

$$|a_2| \leq \sqrt{2}.$$

Some examples of bi-univalent functions are given (see also the work of Srivastava et al. [13]):

$$\frac{z}{1-z}$$
, $\frac{1}{2}\log\left(\frac{1+z}{1-z}\right)$ and $-\log(1-z)$.

Indeed, as pointed out by Srivastava *et al.* [13], the coefficient estimate problem for each of the following Taylor-Maclaurin coefficients:

$$|a_n|$$
 $(n \in \mathbb{N} \setminus \{1, 2\}; \mathbb{N} := \{1, 2, 3, \cdots\})$

is still open.

In recent years, the study of bi-univalent functions has gained momentum mainly due to the work of Srivastava *et al.* [13], which has apparently revived the subject. Motivated by their work [13], many researchers (see, for example, [3, 5, 6, 11, 13, 14, 12, 15, 16, 17, 18]; see also the various closely-related papers on the subject, which are cited in some of these works) have recently investigated several interesting subclasses of the bi-univalent function class Σ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients of functions belonging to these subclasses.

For each function $f \in \mathcal{S}$, the function

$$h(z) = \sqrt[m]{f(z^m)} \qquad (z \in \mathbb{U}; \ m \in \mathbb{N})$$

is univalent and maps the unit disk \mathbb{U} into a region with *m*-fold symmetry. A function is said to be *m*-fold symmetric (see [9, 10]) if it has the following normalized form:

$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1} \qquad (z \in \mathbb{U}; \ m \in \mathbb{N}).$$
(1.5)

We denote by S_m the class of *m*-fold symmetric univalent functions in \mathbb{U} , which are normalized by the series expansion (1.5). In fact, the functions in the class S are one-fold symmetric.

Analogous to the concept of *m*-fold symmetric univalent functions, we here introduced the concept of *m*-fold symmetric bi-univalent functions. Each function $f \in \Sigma$ generates an *m*-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The normalized form of f is given as in (1.5) and the series expansion for f^{-1} is given as follows by using Theorem (1):

$$g(w) = w - a_{m+1}w^{m+1} + \left[(m+1)a_{m+1}^2 - a_{2m+1}\right]w^{2m+1} - \left[\frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}\right]w^{3m+1} + \cdots, \quad (1.6)$$

where $f^{-1} = g$. We denote by Σ_m the class of *m*-fold symmetric bi-univalent functions in U. For m = 1, the formula (1.6) coincides with the formula (1.4) of the class Σ . Some examples of *m*-fold symmetric bi-univalent functions are given as follows:

$$\left(\frac{z^m}{1-z^m}\right)^{\frac{1}{m}}, \quad \left[\frac{1}{2}\log\left(\frac{1+z^m}{1-z^m}\right)\right]^{\frac{1}{m}} \quad \text{and} \quad \left[-\log(1-z^m)\right]^{\frac{1}{m}}$$

with the corresponding inverse functions given by

$$\left(\frac{w^m}{1+w^m}\right)^{\frac{1}{m}}, \quad \left(\frac{e^{2w^m}-1}{e^{2w^m}+1}\right)^{\frac{1}{m}} \quad \text{and} \quad \left(\frac{e^{w^m}-1}{e^{w^m}}\right)^{\frac{1}{m}},$$

respectively.

Finally, we denote by \mathcal{P} the Carathéodary class of functions p(z) of the following form:

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots, \qquad (1.7)$$

which are analytic in $\mathbb U$ such that

$$\Re \left\{ p(z) \right\} > 0 \qquad (z \in \mathbb{U}). \tag{1.8}$$

The objective of the present paper is to introduce an elegant formula for computing the coefficients of the inverse functions for the class Σ_m of *m*-fold symmetric functions by means of residue calculus. As an application, we introduce two new subclasses of bi-univalent functions in which both f and f^{-1} are *m*-fold symmetric analytic functions with their derivative in the class \mathcal{P} and obtain coefficient bounds for $|a_{m+1}|$ and $|a_{2m+1}|$ for functions in each of these new subclasses.

In order to derive our main results, we use the following lemma for the Carathéodary class \mathcal{P} .

Lemma. If $h \in \mathcal{P}$, then

$$|c_k| \leq 2 \qquad (k \in \mathbb{N}),$$

where the Carathéodary class \mathcal{P} is the family of all functions h, analytic in \mathbb{U} , for which

$$\Re\{h(z)\} > 0 \qquad (z \in \mathbb{U})$$

and

$$h(z) = 1 + c_1 z + c_2 z^2 + \dots \qquad (z \in \mathbb{U}),$$
 (1.9)

the extremal function being given by

$$h(z) = \frac{1+z}{1-z} \qquad (z \in \mathbb{U}).$$

2 Coefficients of the inverse functions

Coefficients of the inverse f^{-1} of a given function f are obtained generally by virtue of the relation

$$f^{-1}\big(f(z)\big) = z.$$

However, this technique is much too difficult to apply in the case of *m*-fold symmetric functions. To overcome this difficulty, we use a general formula [4] to compute the coefficients of f^{-1} by means of the residue calculus as follows.

Theorem 1. Let f(z) be in the class S. Then the coefficients γ_n of the inverse function

$$f^{-1}(w) = w + \gamma_2 w^2 + \gamma_3 w^3 + \cdots$$

are given by

$$\gamma_n = \frac{1}{n!} \lim_{z \to 0} \left\{ \frac{d^{n-1}}{dz^{n-1}} \left(\frac{z}{f(z)} \right)^n \right\}.$$
 (2.1)

Proof. Let f(z), given by (1.4), be in the class S and suppose that

$$g(w) = f^{-1}(w)$$

is given as in the hypothesis of Theorem 1. Then, from Cauchy's integral formula and by the method described in [7], we have

$$\gamma_n = \frac{1}{2\pi i} \int_{\mathcal{C}_{\varepsilon}} \left(\frac{g(w)}{w^{n+1}} \right) dw = \frac{1}{2n\pi i} \int_{|z|=r} \frac{dz}{[f(z)]^n} \qquad (0 < r < 1),$$
(2.2)

where C_{ε} denotes a closed positively-oriented circle in the complex *w*-plane with centre at w = 0and radius ε ($0 < \varepsilon < 1$). Since the function f(z) is univalent and f(0) = 0, the integrand $\frac{1}{[f(z)]^n}$ has a pole of order *n* at z = 0. Therefore, we have

$$\gamma_n = \frac{1}{n!} \lim_{z \to 0} \left\{ \frac{d^{n-1}}{dz^{n-1}} \left(\frac{z}{f(z)} \right)^n \right\},$$
(2.3)

which evidently proves Theorem 1.

Q.E.D.

In view of Theorem 1, the first two coefficients γ_{m+1} and γ_{2m+1} of the *m*-fold symmetric bi-univalent function f(z) in (1.5) are given by

$$\gamma_{m+1} = \frac{1}{(m+1)!} \lim_{z \to 0} \left\{ \frac{d^m}{dz^m} \left(\frac{z}{f(z)} \right)^{m+1} \right\}$$
(2.4)

and

$$\gamma_{2m+1} = \frac{1}{(2m+1)!} \lim_{z \to 0} \left\{ \frac{d^{2m}}{dz^{2m}} \left(\frac{z}{f(z)} \right)^{2m+1} \right\}.$$
(2.5)

Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions

3 Coefficient bounds for the function class $\mathcal{H}^{lpha}_{\Sigma,m}$

Definition 1. A function f(z), given by (1.5), is said to be in the class $\mathcal{H}^{\alpha}_{\Sigma,m}$ if the following conditions are satisfied:

$$f \in \Sigma_m$$
 and $|\arg\{f'(z)\}| < \frac{\alpha \pi}{2}$ $(z \in \mathbb{U}; \ 0 < \alpha \leq 1)$ (3.1)

and

$$\left|\arg\left\{g'(w)\right\}\right| < \frac{\alpha\pi}{2} \qquad (w \in \mathbb{U}; \ 0 < \alpha \leq 1),$$
(3.2)

where the function g(w) is given by (1.6).

In this section, we first state and prove the following theorem.

Theorem 2. Let the function f(z), given by (1.5), be in the class $\mathcal{H}^{\alpha}_{\Sigma,m}$ ($0 < \alpha \leq 1$). Then

$$|a_{m+1}| \leq \frac{2\alpha}{m\sqrt{(m+1)(\alpha m+m+1)}}$$
(3.3)

and

$$a_{2m+1} \leq \frac{2\alpha \left[(2m+1)\alpha + m + 1 \right]}{(m+1)(2m+1)}.$$
(3.4)

Proof. From (3.1) and (3.2), we get

$$f'(z) = \left[p(z)\right]^{\alpha} \tag{3.5}$$

and

$$g'(w) = [q(w)]^{\alpha},$$
 (3.6)

where the functions p(z) and q(w) are in the class \mathcal{P} and have the following series representations:

$$p(z) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \cdots$$
(3.7)

and

$$q(w) = 1 + q_m w^m + q_{2m} w^{2m} + q_{3m} w^{3m} + \cdots$$
(3.8)

Now, equating the coefficients in (3.5) and (3.6), we find that

$$(m+1)a_{m+1} = \alpha p_m, (3.9)$$

$$(2m+1)a_{2m+1} = \alpha p_{2m} + \frac{\alpha(\alpha-1)}{2}p_m^2, \qquad (3.10)$$

$$-(m+1)a_{m+1} = \alpha q_m \tag{3.11}$$

and

$$(2m+1)\left[(m+1)a_{m+1}^2 - a_{2m+1}\right] = \alpha q_{2m} + \frac{\alpha(\alpha-1)}{2}q_m^2.$$
(3.12)

From (3.9) and (3.11), we get

$$p_m = -q_m \tag{3.13}$$

and

$$2(m+1)^2 a_{m+1}^2 = \alpha^2 (p_m^2 + q_m^2).$$
(3.14)

Also, from (3.10), (3.12) and (3.14), a simple computation shows that

$$(2m+1)(m+1)a_{m+1}^2 = \alpha(p_{2m}+q_{2m}) + \frac{\alpha(\alpha-1)}{2}(p_m^2+q_m^2)$$
$$= \alpha(p_{2m}+q_{2m}) + \frac{\alpha(\alpha-1)}{2}\frac{2(m+1)^2}{\alpha^2}a_{m+1}^2.$$

Therefore, we have

$$a_{m+1}^2 = \frac{\alpha^2(p_{2m} + q_{2m})}{(m+1)(\alpha m + m + 1)}$$

Applying the Lemma of the preceding section for the coefficients p_{2m} and q_{2m} , we obtain

$$|a_{m+1}| \leq \frac{2\alpha}{\sqrt{(m+1)(\alpha m + m + 1)}}.$$

This gives the desired estimate for $|a_{m+1}|$ as asserted in (3.3).

Next, in order to find the bound on $|a_{2m+1}|$, by subtracting (3.12) from (3.10), we get

$$2(2m+1)a_{2m+1} - (m+1)(2m+1)a_{m+1}^2$$

= $\alpha(p_{2m} - q_{2m}) + \frac{\alpha(\alpha - 1)}{2}(p_m^2 - q_m^2).$ (3.15)

By a simple computation, and using (3.13) to (3.15), we get

$$a_{2m+1} = \frac{\alpha^2 (p_m^2 + q_m^2)}{4(m+1)} + \frac{\alpha (p_{2m} - q_{2m})}{2(2m+1)}.$$

Thus, by applying the Lemma of Section 1 again for the coefficients p_m, p_{2m}, q_m and q_{2m} , we find that

$$|a_{2m+1}| \leq \frac{2\alpha \left[(2m+1)\alpha + m + 1 \right]}{(m+1)(2m+1)}.$$

This completes the proof of Theorem 2.

Q.E.D.

Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions

4 Coefficient bounds for the function class $\mathcal{H}_{\Sigma,m}(\beta)$

Definition 2. A function f(z), given by (1.5), is said to be in the class $\mathcal{H}_{\Sigma,m}(\beta)$ if the following conditions are satisfied:

$$f \in \Sigma_m$$
 and $\Re\{f'(z)\} > \beta$ $(z \in \mathbb{U}; 0 \leq \beta < 1)$ (4.1)

and

$$\Re\left\{g'(w)\right\} > \beta \qquad \left(z \in \mathbb{U}; \ 0 \leq \beta < 1\right),\tag{4.2}$$

where the function g is defined by (1.6).

In this section, we state and prove the following theorem.

Theorem 3. Let the function f(z), given by (1.5), be in the class $\mathcal{H}_{\Sigma,m}(\beta)$ $(0 \leq \beta < 1)$. Then

$$|a_{m+1}| \le 2\sqrt{\frac{(1-\beta)}{(m+1)(2m+1)}} \tag{4.3}$$

and

$$|a_{2m+1}| \leq 2(1-\beta) \left(\frac{(1-\beta)(2m+1)+m+1}{(m+1)(2m+1)} \right).$$
(4.4)

Proof. First of all, the argument inequalities in (4.1) and (4.2) can be written in the following forms:

$$f'(z) = \beta + (1 - \beta)p(z) \tag{4.5}$$

and

$$g'(w) = \beta + (1 - \beta)q(w),$$
 (4.6)

where the functions p(z) and q(w) are in the class \mathcal{P} and have the forms given by (3.7) and (3.8), respectively. Now, as in the proof of Theorem 2, by equating the coefficients in (4.5) and (4.6), we get

$$(m+1)a_{m+1} = (1-\beta)p_m, \tag{4.7}$$

$$(2m+1)a_{2m+1} = (1-\beta)p_{2m},\tag{4.8}$$

$$-(m+1)a_{m+1} = (1-\beta)q_m \tag{4.9}$$

and

$$(2m+1)\left[(m+1)a_{m+1}^2 - a_{2m+1}\right] = (1-\beta)q_{2m}.$$
(4.10)

From (4.7) and (4.9), we get

$$p_m = -q_m \tag{4.11}$$

and

$$2(m+1)^2 a_{m+1}^2 = (1-\beta)^2 (p_m^2 + q_m^2).$$
(4.12)

Also, from (4.8) and (4.10), we obtain

$$(m+1)(2m+1)a_{m+1}^2 = (1-\beta)(p_{2m}+q_{2m})$$

Thus, clearly, we have

$$|a_{m+1}|^2 \leq \frac{(1-\beta)\left(|p_{2m}|+|q_{2m}|\right)}{(m+1)(2m+1)} \leq \frac{4(1-\beta)}{(m+1)(2m+1)}.$$

This gives the bound on $|a_{m+1}|$ as asserted in (4.3).

Next, in order to find the bound on $|a_{2m+1}|$, by subtracting (4.10) from (4.8), we get

$$2(2m+1)a_{2m+1} - (m+1)(2m+1)a_{m+1}^2 = (1-\beta)(p_{2m} - q_{2m})$$

or, equivalently,

$$a_{2m+1} = \frac{(m+1)}{2}a_{m+1}^2 + \frac{(1-\beta)(p_{2m}-q_{2m})}{2(2m+1)}.$$
(4.13)

Upon substituting the value of a_{m+1}^2 from (4.12), we get

$$a_{2m+1} = \frac{(1-\beta)^2 (p_m^2 + q_m^2)}{4(m+1)} + \frac{(1-\beta)(p_{2m} - q_{2m})}{2(2m+1)}.$$
(4.14)

Applying the Lemma of Section 1 for the coefficients p_m , p_{2m} , q_m and q_{2m} , we find that

$$|a_{2m+1}| \leq 2(1-\beta) \left(\frac{(1-\beta)(2m+1)+m+1}{(m+1)(2m+1)} \right)$$
(4.15)

which is the bound on $|a_3|$ as asserted in (4.4).

5 Corollaries and consequences

For one-fold symmetric bi-univalent functions, Theorem 2 and Theorem 3 reduce to Corollary 1 and Corollary 2, respectively, which were proven earlier by Srivastava *et al.* [13].

Corollary 1. (see [13]) Let the function f(z), given by (1.1), be in the class $\mathcal{H}_{\Sigma}^{\alpha}$ ($0 < \alpha \leq 1$). Then

$$|a_2| \le \alpha \sqrt{\frac{2}{2+\alpha}} \tag{5.1}$$

and

$$|a_3| \le \frac{\alpha(3\alpha+2)}{3}.\tag{5.2}$$

Corollary 2. (see [13]) Let the function f(z), given by (1.1), be in the class $\mathcal{H}_{\Sigma}(\beta)$ $(0 \leq \beta < 1)$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{3}} \tag{5.3}$$

and

$$|a_3| \le \frac{(1-\beta)(5-3\beta)}{3}.$$
 (5.4)

Numerous other (presumably new) corollaries and consequences of our main results can also be deduced.

Q.E.D.

References

- D. A. Brannan and J. G. Clunie (Editors), Aspects of contemporary complex analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979), Academic Press, New York and London, 1980.
- [2] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [3] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.
- [4] A. W. Goodman, Univalent functions, Vols. 1 and 2, Mariner Publishing Company, Tampa, Florida, 1983.
- [5] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179–182.
- [6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15–26.
- [7] J. G. Krzyż, R. J. Libera and E. J. Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103–110.
- [8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
- [9] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324–329.
- [10] C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259–269.
- [11] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in Nonlinear Analysis: Stability, Approximation, and Inequalities (Panos M. Pardalos, Pando G. Georgiev and Hari M. Srivastava, Editors.), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607–630.
- [12] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831–842.
- [13] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.
- [14] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of biunivalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2) (2013), 67–73.
- [15] Q.-H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24 (2011), 396-401.

- [16] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994.
- [17] Q.-H. Xu, H.-G. Xiao, and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461–11465.
- [18] Q.-H. Xu, C.-B. Lv and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput. 219 (2013), 7000-7011.